Identities for circuit partition polynomials , with applications to the Tutte polynomial

نویسنده

  • Joanna A. Ellis-Monaghan
چکیده

The Martin polynomials, introduced by Martin in his 1977 thesis, encode information about the families of circuits in Eulerian graphs and digraphs. The circuit partition polynomials, J (G;x) and j ( G;x), are simple transformations of the Martin polynomials. We give new identities for these polynomials, analogous to Tutte’s identity for the chromatic polynomial. Following a useful expansion of Bollobás [J. Combin. Theory Ser. B 85 (2002) 261–268], these formulas give combinatorial interpretations for all integer evaluations of the circuit partition and Martin polynomials. Selected evaluations of the formulas give combinatorial identities that expose the structure and relations of Eulerian graphs and digraphs. New identities and combinatorial interpretations for all integer values of the Tutte polynomial of a planar graph along the line y = x also follow from these results.  2003 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Circuit Partition Polynomial with Applications and Relation to the Tutte and Interlace Polynomials

This paper examines several polynomials related to the field of graph theory including the circuit partition polynomial, Tutte polynomial, and the interlace polynomial. We begin by explaining terminology and concepts that will be needed to understand the major results of the paper. Next, we focus on the circuit partition polynomial and its equivalent, the Martin polynomial. We examine the resul...

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

On the Algebraic Complexity of Some Families of Coloured Tutte Polynomials

We investigate the coloured Tutte polynomial in Valiant’s algebraic framework of NP-completeness. Generalising the well known relationship between the Tutte polynomial and the partition function from the Ising model, we establish a reduction from the permanent to the coloured Tutte polynomial, thus showing that its evaluation is a VNP−complete problem.

متن کامل

Some Variants of the Exponential Formula, with Application to the Multivariate Tutte Polynomial (alias Potts Model)

We prove some variants of the exponential formula and apply them to the multivariate Tutte polynomials (also known as Potts-model partition functions) of graphs. We also prove some further identities for the multivariate Tutte polynomial, which generalize an identity for counting connected graphs found by Riordan, Nijenhuis, Wilf and Kreweras and in more general form by Leroux and Gessel, and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003